Strike Lane

Calculations Policy

Addition
In developing a written method for addition, it is important that children understand the concept of addition, in that it is:

- Combining two or more groups to give a total or sum
- Increasing an amount

They also need to understand and work with certain principles, i.e. that it is:

- the inverse of subtraction
- commutative i.e. $5+3=3+5$
- associative i.e. $5+3+7=5+(3+7)$

The fact that it is commutative and associative means that calculations can be rearranged, e.g.
$4+13=17$ is the same as $13+4=17$.

		Use the bar model and the part whole model to support addition of one and two digit numbers up to 20. To support addition children will count on on a numbered number line.						
Learn number bonds to 20 and demonstrate related facts.								
Addition and subtraction taught alongside each other as pupils need to see the relationship between the facts.								
Add numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones: a two-digit number and tens; two two-digit numbers: three one-digit numbers.	Tens Ones II $: \cdot$ IIII Tens Ones $\\|\\|\\|\\|$ $:::$ $\\|\\|$ $\begin{array}{r} 34+12= \\ 30+10=40 \\ 4+2=6 \\ 40+6=46 \end{array}$							

Subtraction
In developing a written method for subtraction, it is important that children understand the concept of subtraction, in that it is:

- Removal of an amount from a larger group (take away)
- Comparison of two amounts (difference)

They also need to understand and work with certain principles, i.e. that it is:

- the inverse of addition
- not commutative i.e. 5-3 is not the same as 3-5
- not associative i.e. 10-3-2 is not the same as 10-(3-2)

Expectation
Using quantities and
objects, children
subtract two single-
digit numbers and
count on or back to
find the answer.
Subtract one-digit and

20, including zero (using concrete objects and pictorial representations).

Subtract numbers using concrete objects, pictorial
representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers.

Touch count and remove the number to be taken away, in this case 4.

Touch count to find the number that remains.

Additional Information Children are encouraged to develop a mental picture of the number system in their heads to use for calculation.

They should experience practical calculation opportunities using a wide variety of practical equipment, including small world play, role play, counters, cubes etc.

Those who are ready can then begin to record their answers, e.g. 9-4=5.

Children will continue to use practical equipment and taking away strategies. To avoid the need to exchange for subtraction at this stage, it is advisable to continue to use equipment such as counters, cubes and the units from the Base 10 equipment, but not the tens, e.g. 13-4.
Children will then use a
number line to support
subtraction by counting
back.
(

Multiplication

Multiplication

In developing a written method for multiplication, it is important that children understand the concept of multiplication, in that it is:

- repeated addition

They should also be familiar with the fact that it can be represented as an array
They also need to understand and work with certain principles, i.e. that it is:

- the inverse of division
- commutative i.e. 5×3 is the same as 3×5
- associative i.e. $2 \times 3 \times 5$ is the same as $2 \times(3 \times 5)$

Expectation	Example	Additional Information
EYFS/KS1 Multiplication Early Learning Goal Children solve problems, including doubling. Year 1 - End of Year Objective: Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Year 2 - End of Year Objective: Calculate mathematical statements for multiplication (using repeated addition) and write them using the multiplication (x) and equals (=) signs.	Stage 1 This image represents two groups of 4 or 4 twice	Children are encouraged to develop a mental image of the size of numbers. They will learn about equal groups or sets of objects in practical and real life situations. Stage 1 Experiencing equal groups of objects. They will think about doubling when solving practical problems.

progressing to formal written methods.*

Year 4 - End of Year Objective:
Multiply two-digit and three-digit numbers by a one-digit number using formal written layout.

Year 5 - End of Year Objective:
Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers.

Year 6 - End of Year Objective:
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

Multiply one-digit numbers with up to two decimal places by whole numbers.

Stage 3i (year 4)

Stage 3ii

Stage 1 would start in Year 3 and stage 4 would typically appear in Year 6.

Multiplication starts with multiplying a single digit by a two digit number using grid method with awareness of place value.

It is made up of two stages; the multiplication stage and then column addition to get the final answer.

The same method is used to multiply single digits by three digit numbers and decimals

Stage 4 is an additional stage to our policy with the hope it will help children to understand to method needed when multiplying two digit numbers by three or four digit numbers. With the method clearly showing the stages of multiplying the ones and then the tens it allows them to understand the following
342×45 is broken down as:
300×5
40×5
2×5
and then

$$
\begin{array}{r}
300 \times 40 \\
42 \times 40 \\
2 \times 40
\end{array}
$$

Stage 5 is the final stage of multiplication using the formal written method where the children will require secure knowledge of multiplying numbers by ten and column addition with exchanging where appropriate

In developing a written method for division, it is important that children understand the concept of division, in that it is:

- repeated subtraction

They also need to understand and work with certain principles, i.e. that it is:

- the inverse of multiplication
- not commutative i.e. $15 \div 3$ is not the same as $3 \div 15$
- not associative i.e. $30 \div(5 \div 2)$ is not the same as $(30 \div 5) \div 2$

| KS1 Division |
| :--- | :--- |
| Early Learning Goal: |
| Children solve |
| problems, including |
| halving and sharing. |
| Year 1 - End of Year |
| Objective: |
| Solve one-step |
| problems involving |
| division by calculating |
| the answer using |
| concrete objects, |
| pictorial |
| representations and |
| arrays with the |
| support of the |
| teacher. |
| Year 2 - End of Year |
| Objective: |
| Calculate mathematical |
| statements for division |
| within the |
| multiplication tables |
| and write them using |
| the division (|
| equals (=) signs. |

Year 3	00000000000 0000000000000 Stage 4	Equal grouping (How many groups of 2 are there in 6?) There are 6 football stickers, how many people can have 2 stickers each? Stage 3 Children continue to use practical equipment to represent division calculations as grouping (repeated subtraction) and use jottings to support their calculation. $12 \div 3=$? Children begin to read this calculation as, 'How many groups of 3 are there in 12?' At this stage, children will also be introduced to division calculations that result in remainders. $13 \div 4=3$ remainder 1 Stage 4 $43 \div 8$ $43 \div 8=5$ remainder 3 At this stage, children also learn if the remainder should be rounded up or down e.g. $62 \div 8=7$ remainder 6 I have 62p. Sweets are 8 peach. How many can I buy? Answer: 7 (the remaining $6 p$ is not enough for another sweet) Apples are packed into boxes of 8 . There are 62

